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Abstract—A one-pot synthesis of 2,3,5-trisubstituted cyclopentadienones has been delineated through ring contraction of suitably
functionalized 2H-pyran-2-ones using either cyanoacetamide or methyl cyanoacetate.
� 2004 Elsevier Ltd. All rights reserved.
Cyclopentadienones are known to display diverse phar-
macological activities1 and are potent synthetic interme-
diates for the construction of various natural products
of therapeutic importance. The biodynamic properties
of this class of compounds focused our interest on the
synthesis of this important structural motif.2

Cyclopentadienones have been synthesized previously
by t-BuOK catalyzed oxygenation of 4-aryl-2,6-di-t-
butyl- and 2,4,6-tri-t-butyl-phenols in t-butanol.3,4 They
are also prepared by coupling propargylic alcohols and
their derivatives with cyclopropyl carbene–chromium
complexes.5 Recently, cyclopentadienones have been
prepared by a silicon tethered[2+2+1]cyclo-carbonyl-
ation reaction of two alkynes promoted by penta-car-
bonylation6 and has the potential to offer a broad
range of this class of compounds. Transition metal
mediated carbonylative coupling reactions are often
used for the insertion of carbonyl groups into organic
compounds. Insertion of CO into zirconacyclopentadi-
enes in the presence of a Ni-complex is also an alterna-
tive route for cyclopentadienone synthesis.7 Thus, cobalt
carbonyl complex mediated carbonylative alkyne–al-
kyne coupling reactions have also been used for the con-
struction of cyclopentadienones.8–11 These compounds
are often isolated as g4-metal complexes because of their
unstable nature and tendency to polymerize. Thus there
is a need to develop methodology, which is free from the
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use of metal carbonyls as catalysts and that also has op-
tions for varying substitutents in the cyclopentadienone
ring, which could in turn provide stability to the
molecule.

Herein, we report an innovative one-pot synthesis of
2,3,5-trisubstituted cyclopentadienones through base-in-
duced ring contraction of 6-aryl-4-amino-2H-pyran-3-
carbonitriles12 using either cyanoacetamide or methyl
cyanoacetate in moderate yields. So far and to our
knowledge there have been no reports on the synthesis
of cyclopentadienones via ring contraction of suitably
functionalized-2H-pyran-2-ones. Thus an equimolar
mixture of 2H-pyran-2-one 1, cyanoacetamide 2 and
powdered KOH in dry DMF was stirred for 24h at
room temperature, poured onto crushed ice and thereaf-
ter neutralized with aqueous HCl. The separated precip-
itate was filtered, dried and purified by silica gel column
chromatography to yield a reddish brown solid. Our
attempts to isolate any of the potential intermediates
so as to establish the course of reaction failed.

A plausible mechanism for this reaction involves nucle-
ophilic attack by the carbanion generated from cyano-
acetamide in situ at C6 of the pyran ring with ring
opening followed by recyclization involving the carboxyl
group and the active methylene group of cyanoacet-
amide with elimination of water. The cyclic intermediate
thus formed undergoes ring contraction with elimina-
tion of cyanoacetamide. A similar mechanism is envis-
aged for methyl cyanoacetate as the nucleophile.

In fact this reaction was carried out to prepare highly
functionalized biaryls 4 through ring transformations
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Table 1. Cyclopentadienones derivatives 3a–j produced via Scheme 1

3 Ar Yield % (3)

a Phenyl 48

b 1-Naphthyl 47

c 4-Fluorophenyl 49

d 4-Chlorophenyl 50

e 4-Bromophenyl 52

f 4-Methylphenyl 48

g 4-Methoxyphenyl 51

h 3,4-Dichlorophenyl 49

i 3-Chloro-4-methylthiophenyl 42
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Scheme 1. Preparation of cyclopentadienones.

Figure 1. Displacement ellipsoid plot (30% probability) of the X-ray

crystal structure of 3e.
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of 2H-pyran-2-ones by cyanoacetamide under basic con-
ditions. However, the usual work-up and purification of
the crude product by column chromatography led to
functionalized cyclopentadienones 3 (Table 1) in lieu
of biaryls 4 by following pathway-A as depicted in
Scheme 1.

The isolated products were characterized13 by NMR
and mass spectrometry and also through single crystal
X-ray diffraction analysis in the case of 3e.14 The X-
ray crystal structure of 3e is shown in Figure 1 along
with the atomic numbering scheme, and unambiguously
confirmed the structure of 3e as 4-(4-bromophenyl)-5-
oxo-2-piperidin-1-yl-cyclopenta-1,3-dienecarbonitrile.

Under similar conditions, the reaction of 2H-pyran-2-
one 1 with methyl cyanoacetate in lieu of cyanoacet-
amide gave the same products. The 1H NMR spectrum
of 3d showed two broad singlets at 1.85 (6H of piper-
idine). The multiplets at d 3.76–3.80 and d 4.09–4.13
were attributed to the two NCH2 protons. Two doublets
at d 7.37 and 7.79 were assigned to the ortho coupled
aromatic protons.

In conclusion, our methodology for the construction of
cyclopentadienones is superior to known literature pro-
cedures in respect of the easy work-up, mild reaction
conditions, use of economical reactants and absence of
catalyst. It also provides an option for varying the sub-
stituents on the cyclopentadienone ring.
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